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The Influence of the “Mixed Pixel” Problem on the

Detection of Analogous Forest Communities Between

Presettlement and Present in Western New York∗

Barry J. Kronenfeld
George Mason University

Yi-Chen Wang
National University of Singapore

Chris P. S. Larsen
University at Buffalo--State University of New York

We conducted a land change analysis to determine if the forest communities of presettlement and present
contain areas that are analogous in composition, using surveys of the Holland Land Company (1797–1799)
and U.S. Forest Service (1991–1993) from western New York. Gridded forest-type maps are produced from
each survey using two models: a uniform model that assumes each data grid cell is occupied by a single forest
type, and a mixture model in which grid cells are assumed to be occupied by multiple forest types in different
proportions. The mixture model consistently detects a larger area of analogous communities in the two time
periods at both global and local scales. Key Words: analog communities, forest community change analysis,
linear unmixing, presettlement land survey record, western New York.

Llevamos a cabo un análisis de la transformación de la tierra para determinar si las comunidades forestales de
antes del asentamiento humano y en el presente contienen áreas que sean análogas en composición, utilizando
estudios hechos en el occidente de Nueva York por la Compañı́a Holland Land (1797–1799) y los del Servicio
de Bosques de los EE.UU (1991–1993). A partir de cada uno de esos estudios, se generaron mapas reticulados
tipo forestal mediante la aplicación de dos modelos: un modelo uniforme en el que se asume que cada celda
de la rejilla de datos es ocupada por un solo tipo de bosque, y un modelo mixto en el cual las celdas de
la rejilla se asumen ocupadas por múltiples tipos de bosque, en diferentes proporciones. El modelo mixto
consistentemente detecta un área más grande de comunidades análogas en dos perı́odos de tiempo a escalas
tanto globales como locales. Palabras clave: comunidades análogas, análisis de cambio en comunidades
forestales, desmezclado linear, estudio de tierras prı́stinas, occidente de Nueva York.

I n analysis of remote sensing imagery, it is
widely recognized that a single pixel may

∗The authors would like to acknowledge support from NUS funding # R-109-000-060-012/133 and thank the three anonymous reviewers for
their insightful comments on the article.

contain multiple land cover categories. Fail-
ure to account for these so-called mixed pixels
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The “Mixed Pixel” Problem in Detection of Analogous Forest Communities 183

increases classification uncertainty and results
in bias against small land cover categories
(Foody 1996). In change detection analyses, ig-
noring mixed pixels tends to result in erroneous
estimation of the amount of disagreement be-
tween two images (Power, Sims, and White
2001; van Oort 2005). To avoid these biases,
techniques have been developed to “unmix”
each pixel into its source components using
linear, stochastic, optical, geometric, or fuzzy
mixture models (Ichoku and Karnieli 1996).

The problem of mixed pixels is ultimately
caused by coarse data resolution and thus ap-
plies to other data contexts besides remote
sensing. One such context arises when data
collected at point locations are aggregated or
interpolated either to increase the sample size
for statistical estimation or to create a spatial
grid for mapping purposes. The resulting mix-
ture of data within each grid cell is analogous
to the mixture of reflectances from multiple ob-
jects present in a single remote sensing pixel.

This study examines the effect of the mixed
pixel problem on interpretation of historical
changes that have occurred in the forests of the
eastern United States following European set-
tlement. At this spatiotemporal scale, our un-
derstanding has been greatly facilitated by the
existence of presettlement land survey records
(PLSRs), which contain records of the individ-
ual trees marked by the first European survey-
ors of frontier land throughout most of the
United States. PLSRs have been used since
the 1920s to reconstruct forest composition
prior to major European settlement and have
been compared with modern forest inventories
to analyze changes that have occurred in the
intervening centuries (Wang 2005). However,
researchers are constrained by the sampling in-
tensity of the original surveys. Although there
exists substantial variation, a typical survey con-
sisted of two to four trees marked at each sur-
vey corner, with corners spaced at half-mile
intervals along survey lines running along the
boundaries of 1 × 1 square mile township sec-
tions. Modern forest inventories are also lim-
ited in their spatial resolution, and although
more intensive sampling of the present-day for-
est is possible, costs are generally prohibitive.
The wide areas covered by these data sources,
their limited sampling intensity, and lack of
spatial correspondence have led several authors
to aggregate or interpolate data to form grid-
ded data representations with cell sizes ranging

from 1 × 1 mile (He et al. 2000) to 6 × 6 miles
(Friedman and Reich 2005).

One problem encountered in comparative
PLSR studies is that few analogs to preset-
tlement forest community types have been
found in modern forests (Foster, Motzkin,
and Slater 1998; Whitney and DeCant 2001;
Friedman and Reich 2005). This lack of ana-
log communities has caused several authors to
limit the scope of analysis to certain forest
types only (Batek et al. 1999; Radeloff et al.
1999). Most studies do not perform commu-
nity change analysis at all; instead, research is
limited either to the distribution of historical
forest types (e.g., Leitner et al. 1991; Abrams
and McCay 1996; Brown 1998; Black, Foster,
and Abrams 2002; Cogbill, Burk, and Motzkin
2002; Bolliger et al. 2004; Bolliger and Mlade-
noff 2005; Wang 2007) or to changes in the
distributions of individual taxa rather than com-
munities (e.g., Cowell 1998; Radeloff et al.
1999; Dyer 2001). A few studies that primar-
ily focus on changes in taxonomic composition
also discuss (Whitney and DeCant 2003) or
map (Foster, Motzkin, and Slater 1998; Fried-
man and Reich 2005) forest communities for
both time periods but do not analyze changes
in the location or spatial pattern of individ-
ual community types. By and large, presettle-
ment research has either been confined to one
time period or else focused on taxa rather than
communities.

The perceived lack of modern analogs to
presettlement forest communities has been at-
tributed to the large differences in taxonomic
composition observed between presettlement
and present (Cowell 1998). This explanation
cannot be complete, however, because the net
changes observed in forest community types
have been larger than those observed at the
level of individual taxa (e.g., Foster, Motzkin,
and Slater 1998; Friedman and Reich 2005). An
ecological explanation for the greater change
in community types is that there have been
changes in stand-scale associations between
taxa. An alternative explanation might be that
data aggregation and coarse resolution analysis
have mixed together existing analog commu-
nities. To distinguish between these two pos-
sibilities, it is necessary to consider the mixed
pixel problem and apply appropriate unmixing
techniques.

In this study, the distribution of forest com-
munity types in western New York in 1797–
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1799, when the area was surveyed by the
Holland Land Company (HLC), is compared
to that in 1991–1993 when the area was sur-
veyed by the U.S. Forest Service as part of
the Forest Inventory and Analysis (FIA) pro-
gram. To determine the effect of the mixed
pixel problem on the discovery of analog com-
munities, analysis is conducted via two models:
a uniform model, in which each grid cell is as-
sumed to be occupied uniformly by a single
forest type, and a mixture model, in which each
grid cell is posited to contain a mixture of differ-
ent forest types. A linear unmixing technique is
used to estimate forest type proportions within
each grid cell under the mixture model.

Although the problem of coarse data res-
olution has been noted in other presettle-
ment studies (e.g., Dyer 2001), no previous
study has applied a mixture model to PLSRs.
Several authors have used fuzzy classification,
which is similar to linear unmixing, to rep-
resent boundary uncertainty and continuous
gradients between presettlement communities
(Brown 1998; Bolliger and Mladenoff 2005).
These studies, however, did not interpret fuzzy
membership values as proportions, nor did they
address the implications of the mixed pixel
problem on community change analysis. By
applying an explicit mixture model to PLSRs,
we aim to determine to what degree perceived
changes in forest type distributions might be
the result of coarse resolution analysis. In addi-
tion, this article illustrates a common scenario
in which mixture problems occur and demon-
strates how unmixing techniques can be applied
in this scenario.

Linear Unmixing

The problem of estimating proportions of con-
stituent components from mixed data is com-
mon to a variety of disciplines, ranging from
chemistry to geology and air pollution stud-
ies (Akerjord and Christophersen 1996). In re-
mote sensing, linear unmixing has often been
applied to the mixed pixel problem, which arises
when the spectral attributes of a single pixel re-
sult from the combined reflectance of multiple
surface types. Linear unmixing can be consid-
ered a type of fuzzy classification; Nascimento,
Mirkin, and Moura-Pires (2003) define a “pro-
portional membership model” of fuzzy classifi-
cation, and researchers in climate (McBratney
and Moore 1985), soil science (Zhu 1997), veg-
etation mapping (Kronenfeld 2005), and ge-
ographic information systems (Burrough and
McDonnell 1998) have all suggested a linear
mixture be used to reconstruct underlying at-
tributes from fuzzy membership values. How-
ever, Ichoku and Karnieli (1996) describe the
“fuzzy” model as a distinct alternative to lin-
ear unmixing in the estimation of subpixel land
cover in remote sensing applications. To avoid
confusion, the term linear unmixing is used
throughout this article.

The conceptual basis behind linear unmix-
ing in this study is illustrated in Figure 1. We
assume that homogenous forest communities
of various types are distributed across the land-
scape in discrete patches (Figure 1A). Recorded
data are sparse, and so data on taxonomic com-
position are interpolated to a regular grid (Fig-
ure 1B). Estimated taxonomic composition in

Figure 1 Schematic diagram showing coarse resolution data derived from a patchwork of two forest
communities along an environmental gradient (A). These patches occur at or finer than the resolution of
the analysis grid (B). Although subpixel spatial distribution cannot be discerned, the proportion of each
grid cell occupied by each forest type can be estimated, as indicated by shading in (C).
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The “Mixed Pixel” Problem in Detection of Analogous Forest Communities 185

each cell is a function of the proportion of the
cell occupied by each forest type, plus an er-
ror component introduced by the interpola-
tion process. Although it is impossible to re-
construct the underlying spatial pattern, forest
type proportions within each grid cell (indi-
cated by the shades of gray in Figure 1C) can
be predicted from this taxonomic composition.

Numerically, linear unmixing seeks to ex-
press the observed taxonomic composition of
each grid cell as the weighted average of a set
of component forest types:

xi j ≈ x̂i j ≡
k∑

q=1

piq c q j i = 1 . . . j = 1 . . .m

(1)

where m = number of taxa; n = number of grid
cells; k = number of forest types; xi j= actual
relative abundance of the j th taxon in the ith
grid cell; x̂i j= modeled relative abundance of
the j th taxon in the ith grid cell; piq= propor-
tion of forest community type q in grid cell i ;
and c q j = typical relative abundance of taxon j
in forest community type q .

This formula can be represented succinctly
in matrix form as:

X ≈ X̂ ≡ PC ′ (2)

where X and X̂ are n × m matrices of actual and
modeled species-relative abundances in each
grid cell, P is an n × k matrix of forest type
proportions in each grid cell, C is an m × k ma-
trix of prototypical taxon abundances in each
forest type, and C′ is the transpose of C. The
proportion matrix P is constrained by two con-
ditions

0 ≤ piq ≤ 1, i = 1. . .n, q = 1 . . . k (3)

k∑
q=1

piq = 1, i = 1 . . . n (4)

that denote that proportions must be nonneg-
ative and sum to one.

Because the matrix product PC ′ models each
element in X as a linear combination of con-
stituent types, it is referred to as a linear mix-
ing model (Akerjord and Christophersen 1996).
A good model minimizes the difference be-

tween X and PC′, usually in a least-squares
sense. Commonly, the variance-weighted av-
erage squared difference of matrix elements is
minimized, resulting in component types being
located in principal component space (Akerjord
and Christophersen 1996). Subtracting this dif-
ference metric from unity yields the percentage
of the total variance of X explained by the mix-
ture model; that is, the percentage variance ex-
plained (PVE) of principal components analysis
(Kronenfeld 2005).

No unique solution to linear unmixing max-
imizes PVE, because for any model {P, C},
an equivalent model {P2, C2} can be de-
rived through simple algebraic transformation
(Wolbers and Stahel 2005). To overcome this
problem, C is often determined either from
prior knowledge or by indirect analysis in
which optimal constituent types are sought that
conform to assumptions regarding the source
domain. The most common assumption is that
mixing is limited at least in some observations,
so that constituent types can be found among
the data points. Building on this assumption,
several metrics have been developed to indi-
cate the compactness and separation of data
around component types (e.g., Fukuyama and
Sugeno 1989; Gath and Geva 1989; Xie and
Beni 1991). However, the coarse resolution of
PLSRs makes it difficult to accept that the mix-
ture of forest types within a grid cell would be
limited. Therefore, we do not use these metrics
in this article, nor do we presume to be able to
identify the forest types that existed in either
time period. Instead, we apply strictly the same
classification method to both presettlement and
modern forest inventory data at a coarse reso-
lution and then compare the results of the uni-
form and mixture models. In this way, we seek
to establish the degree to which discovery of
analog communities is affected by the mixed
pixel problem per se.

Once the forest type matrix C has been de-
termined, each data point can be “unmixed”
according to one of several mixture models
(Ichoku and Karnieli 1996). A linear model is
appropriate when observations are simple com-
positional mixtures of constituent components,
as is the case with areal aggregations of inter-
nally homogeneous forest communities. Lin-
ear unmixing is achieved by projecting the vec-
tor representing the taxonomic composition of
each grid cell onto the (k − 1) dimensional
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Figure 2 Area of the Holland Land Company (HLC) survey in western New York, with sampling locations.
Dyer’s (2006) forest regions are shown in shades of gray and labeled in the inset. FIA = Forest Inventory
and Analysis.

hyperplane defined by the k component for-
est types. Given C, linear unmixing produces a
unique proportion matrix P. Linear mixing is
implemented in most remote sensing software,
including ENVI (ITT Visual Information
Solutions).

Study Area and Data

The study area is comprised of 162 townships
surveyed by the HLC between 1797 and 1799
in western New York (Figure 2). These town-
ships lie between the Pennsylvania state line
to the south and Lake Ontario to the north
and are bounded on the west by Lake Erie and
the Niagara River. The area encompasses all or
part of eight counties and covers approximately
14,400 km2, extending across two commonly
recognized physiographic sections. The north-
ern part of the study area is located in the Erie
Ontario Lowland, a section with relatively low,
flat topography; the southern part belongs to
the Appalachian Upland and has topography of
dissected uplands, formerly glaciated in most
areas (Fenneman 1938). These physiographic
sections correspond closely to broad ecological
(Bailey 1995) and vegetation (Dyer 2006) re-

gions. The presettlement vegetation was dom-
inated by beech (Fagus grandifolia) and sugar
maple (Acer saccharum; Wang 2007).

The HLC township perimeter survey
records were used to create maps of forest
communities as they existed prior to major
European settlement. Influenced by the Land
Ordinance of 1785, the legal origin of the rect-
angular system of public land surveys (Wyckoff
1988), the private HLC developer employed a
regular township survey system in western New
York. Land was divided mostly into 6 × 6 mile
townships (1 mile ≈ 1.609 km), but sizes of 4 ×
6 and 7 × 6 miles were also used (Figure 2). Un-
like the public land surveys for which the finer
section-level data at 1 × 1 mile are available, the
finer level data are not available for all the HLC
townships and hence only data from the town-
ship perimeter surveys were used in this study.
Posts were erected at half-mile intervals along
the township perimeter survey lines, and neigh-
boring trees, known as bearing trees, were blazed
and inscribed to mark the location of each post.
Species name, distance, and direction from each
bearing tree to the post were recorded by the
surveyors. These data were transcribed from
microfilms of surveyors’ manuscripts obtained
from the HLC Archives at SUNY Fredonia and
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the New York State Archives at Albany, New
York, and converted into shapefile format, re-
sulting in a total of 3,897 posts with 8,792 bear-
ing trees for analysis by Wang (2007).

To characterize modern forest communi-
ties, we used data collected in the most recent
complete FIA inventory of New York State,
conducted between 1991 and 1993 (Alerich,
Klevgard, and Miles 2004). FIA plots can be
considered a fixed-area sample, although sam-
pling scheme has varied somewhat historically
and by state. No documentation regarding sam-
pling scheme exists specific to our study area,
but expansion factors contained within the data
suggest that the area was inventoried using
a combination of 0.5-ha fixed-area plots and
variable-area sampling using a fifteen basal area
factor prism. The FIA data contained twenty-
one pairs and six triplets of apparently colocated
plots. Within every such pair or triplet, each
plot had the same coordinates but contained
unique data with different numbers and species
of trees. This suggested that they were sepa-
rately located plots taken in the same general
vicinity, rather than redundant data or return
sampling of exactly the same location. Each
such group was aggregated into a single plot
for analysis purposes. This resulted in a total of
261 plots containing 4,303 individual trees.

One idiosyncrasy of the FIA data affecting
spatial analysis is the intentional fuzzing of ge-
ographical coordinates by up to a mile and fur-
ther swapping of up to 20 percent of plots on
privately owned land within a county to protect
plot integrity and landowner privacy (Alerich,
Klevgard, and Miles 2004). Fuzzing and swap-
ping means that fine-resolution analyses must
be interpreted with caution. Comparison of
PLSR and FIA data is thus often limited to
coarse resolution analysis.

Taxa used by the HLC were associated
with modern taxa following Wang, Kronenfeld,
and Larsen (2009); some taxa were individual
species, whereas others were groups of closely
related species in the same genus. Although
tree diameters are not recorded by the HLC
township surveyors, estimates based on dis-
tances from survey post to bearing tree suggest
that surveyors looked for trees larger than ∼9
inches in diameter at breast height (Kronenfeld
and Wang 2007); therefore, this size cutoff was
used for the FIA data as well. To avoid adverse
effects of small sample size, only taxa that ex-

isted in both the HLC and the FIA surveys, and
whose average abundance of the two time peri-
ods was ≥1 percent, were used in the analysis.
A total of fourteen taxa met the criteria.

To derive gridded data sets for the HLC and
FIA, relative abundances of each taxon that met
the inclusion criteria were calculated at individ-
ual sample locations (HLC survey corners and
FIA sample plots). The FIA data contain expan-
sion factors signifying the number of trees per
acre represented by each tree tallied, a number
that varies according to the sampling scheme.
To calculate relative abundances within an FIA
plot, each tree was weighted by this expansion
factor.

Grids of taxon abundance for each time
period were created using kriging, a spatial
interpolation method that has been used in pre-
vious presettlement vegetation reconstructions
to allow visualization of tree taxon distributions
in continuous representations (Brown 1998;
Wang and Larsen 2006). Spatial interpolation
also enables comparison of vegetation distribu-
tion derived from the HLC and FIA surveys
that were different in numbers and locations of
sample points. The spatially interpolated sur-
faces of taxa distribution were converted into
6 × 6 mile grid cells, a size corresponding to
that of a township, which is the basic unit of
the HLC survey. Substantial variation in taxon
abundances within each of the 162 resultant
grid cells might occur along topographic gra-
dients, especially in the Appalachian Upland
section; however, ecological modeling at this
scale was not possible due to the inexact lo-
cations of FIA plot data. Conceptually, the in-
terpolation process predicted taxon abundances
as if the entire study region were forested. It
did not capture the significant deforestation for
agricultural and other land uses that occurs in
parts of the study area, which should also be
considered in conservation and management
efforts.

Normalized average relative abundances of
each taxon in the HLC and FIA gridded data are
shown in Table 1. Decline in the abundance of
beech and concomitant increases in red maple
(Acer rubrum), poplar (Populus spp.), and black
cherry (Prunus serotina) are the strongest com-
ponents of change in taxonomic composition.
Overall net change in taxonomic composition,
measured as the sum of differences in overall
taxon relative abundances divided by two was
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Table 1 Average relative abundances (in
percent) of analyzed taxa in the Holland Land
Company (HLC) and Forest Inventory and Analysis
(FIA) gridded data sets

Name used in text Taxa HLC FIA

Ash Fraxinus sp. 6.4 19.0
Basswood Tilia americana 5.2 2.3
Beech Fagus grandifolia 38.8 5.8
Birch Betula alleghaniensis 2.6 1.3
Black cherry Prunus serotina 0.4 10.4
Elm Ulmus americana 4.5 3.5
Hemlock Tsuga canadensis 9.0 5.6
Hickory Carya sp. 1.3 3.8
Pine Pinus strobus 2.6 1.7
Poplar Populus sp. 0.6 10.9
Red maple Acer rubrum 3.1 13.3
Red oak Quercus rubra 0.2 4.3
Sugar maple Acer saccharum 22.4 16.5
White oak Quercus alba 3.0 1.6
Total 100 100

50 percent. This rate was similar to rates calcu-
lated from previous PLSR studies (e.g., Cowell
1998; Foster, Motzkin, and Slater 1998; Fried-
man and Reich 2005).

Classification, Map Production,

and Analysis

Classification and statistical analysis of the grid-
ded data were performed in a custom program
written in Microsoft Visual Basic 6.0. Two con-
ceptual models were created and compared:
a uniform model in which each grid cell was
considered to be occupied by a single forest
type, and a mixture model in which multiple
forest types were allowed to occupy each grid
cell in various proportions. Classification under
each model was represented numerically by a
forest type definition matrix C and a propor-
tion matrix P, the latter constrained by Equa-
tions 3 and 4. In the uniform model, P was
further constrained to exact values of zero or
one.

Forest types under each model were de-
fined using the k-means clustering algorithm,
which seeks a predefined number (k) of
data clusters that minimize within-group vari-
ance (MacQueen 1967). K -means clusters are
sought from within the data itself, a conserva-
tive strategy for the mixture model given that
many grid cells within our study area likely con-
tained multiple forest communities. Using the
same algorithm to derive forest type definitions

for both models, however, allowed us to fo-
cus directly on the effects of within-cell mix-
ing, rather than the more nebulous problem of
defining community types.

The k-means clustering algorithm does not
guarantee a unique outcome but depends some-
what on an initial set of arbitrarily determined
seed clusters. To analyze algorithm variabil-
ity and derive optimal community type defi-
nitions, 1,000 trial runs of the algorithm were
conducted using randomly defined seed clus-
ters for each of k= 2 to 8. This created a 2 ×
7 × 1,000 matrix of algorithm runs on model
(uniform vs. mixture), number of forest com-
munity types (k), and trial number. Input data
for all algorithm runs consisted of the four-
teen normalized relative taxon frequencies at
324 observations (162 grid cells from each of
the HLC and FIA data sets).

For the uniform model, grid cells in each
data set were assigned to the most similar for-
est type according to the inverse Euclidean
distance metric of similarity. For the mixture
model, proportions were assigned by linear
unmixing.

To select forest type definitions from the
1,000 trials for each value of k, we calculated
the PVE by each model as well as a measure of
the degree of analog (dA). PVE was calculated
as:

PVE = 1 −
n∑

i=1

m∑
j=1

(xi j − x̂i j )2

/
m∑
j=1

var(x∗ j )

(5)
where var(x∗ j ) denotes the variance of rela-
tive abundances of the j th taxon. For the uni-
form model, PVE is directly inversely related
to the average squared Euclidean distance be-
tween each data point and its corresponding
cluster, which is the criterion for the k-means
algorithm (MacQueen 1967). Therefore, our
methods maximize PVE for the uniform model
but not the mixture model. PVE has a maxi-
mum value of one or 100 percent, indicating
perfect correspondence between classification
model and underlying data. Although there is
no theoretical minimum, PVE = 0 is a logi-
cal bound that would result from assignment of
every grid cell to a single forest type.

The degree of analog between presettlement
and modern forest communities was expressed
as an inverse function of the average net change
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in areal proportion of each forest type. Let Aq ,t
denote the areal proportion of forest type q
in time period t; the degree of analog (dA) is
defined as:

dA = 1 −
k∑

q=1

|Aq ,HLC − Aq ,FIA|
(Aq ,HLC + Aq ,FIA)

/
k (6)

Because net changes are weighted according to
their magnitude relative to each forest type, this
metric of global analog cannot be dominated by
any single forest type. Note that dA has a the-
oretical range of zero (no analog communities)
to one or 100 percent (identical abundance of
communities).

To enhance identification of analog com-
munities under both the uniform and mixture
models, the “optimal” solution from the trial
runs of the k-means clustering algorithm for
each value of k = 2 to 8 was defined as the trial
that maximized the sum of PVE+ dA. Thus, we
explicitly sought a classification that would re-
sult in maximum analog (combined with good
model fit), but did so for both model types. The
equal weighting of each metric is justified by the
fact that they have similar theoretical ranges.

To further analyze differences in tempo-
ral continuity as portrayed by each model, we
adopt the descriptive method of Pontius (2002)
to calculate rates of persistence, swap, and net
change for each forest type. These metrics pro-
vide a way to distinguish between changes in
net quantity versus changes in spatial alloca-
tion (Pontius, Shusas, and McEachern 2004)
and can be calculated from the composite fuzzy
cross-tabulation matrix of Pontius and Cheuk
(2006). This cross-tabulation matrix calculates
the area of transition between each pair of for-
est types under the assumption that a forest
type found in the same grid cell in both time
periods occurs in the same location within the
grid cell in each time period. Other assump-
tions are possible; Pontius and Connors (2009)
describe methods for calculating a range of val-
ues for each cell in the cross-tabulation matrix.
Of these, the composite cross-tabulation matrix
results in maximal persistence (defined later).
Persistence describes the overall similarity in

map pattern, and is defined as the percentage
of grid cells that remain in the same forest type
in both time periods. Swap indicates changes in
spatial allocation but not quantity and is defined

as the percentage of grid cells that transition to
or from a given forest type, minus net gains and
losses. The sum of persistence and swap thus
indicates the component of each forest type that
is globally present in both time periods. Finally,
net change describes global fluctuations in the
area occupied by each forest type. Net change
is calculated as the sum of net gains, which
equals the sum of net losses, and is equivalent
to the rate of turnover described in many eco-
logical studies (e.g., Cowell 1998). Together,
these metrics provide a way to assess the spatial
analog between presettlement and present.

We followed Dyer (2006) in using taxon in-
dicator values to name forest types. Thematic
maps were created for qualitative assessment
and to aid in interpretation of the measures
of persistence, swap, and net change. Previous
work has shown that accurately interpreting
color maps of mixture models requires a low
degree of mixing (Kronenfeld 2005), which we
did not encounter. To take advantage of the
coarse spatial resolution of the gridded data,
each forest type was depicted separately via
fixed-angle line segments rotated around the
center of each grid cell, with proportions in-
dicated in grayscale. This gave a depiction of
forest type proportions in both time periods,
allowing visual analysis of the degree of overlap
and disjunction.

Results

For classification schemes ranging from k= 2 to
8 forest types, degree of analog (dA) was 8 per-
cent higher, and PVE was 13 percent higher on
average for the mixture model than for the uni-
form model for the trials that maximized the
criterion (PVE + dA). Figure 3 shows these val-
ues for k = 3 to 8. The results were consistent
across all values of k except k = 2. This scheme
was somewhat of an anomaly, as the trial se-
lected by the optimization criterion had ex-
tremely low PVE for both models. This seemed
to be an artifact of the k-means clustering al-
gorithm, which produced two distinct groups
of solutions for k = 2. This artifact did not ap-
pear for k ≥ 3; the results of k = 2 are therefore
omitted from further analysis.

The results varied substantially depending
on the initial seeding of the k-means cluster-
ing algorithm. This is illustrated in Figure 4
for k = 6; other values of k resulted in a similar
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Figure 3 Comparison of percentage variance explaned (PVE) and degree of analog (dA) for uniform and
mixture models. Values are for k-means clustering trial that maximized (PVE + dA) for each of k = 3 to 8
forest types (number of forest types shown on line connecting each pair).

pattern. Although a few trials of the uniform
model resulted in higher PVE and dA than a
few trials under the mixture model, the over-
all pattern for the data clouds mirrors that of
the optimally selected solutions (circled in Fig-
ure 4). Several trials resulted in zero analog un-
der the uniform model, but no trial resulted in
less than 15 percent analog under the mixture
model.

Overall measures of persistence, swap, and
net change for each classification scheme (Fig-
ure 5) revealed different spatial dynamics for

the two models. A greater proportion of the
study area persisted locally in the same forest
type across both time periods under the mixture
model (average = 15.9 percent) than the uni-
form model (average = 4.1 percent) for all val-
ues of k > 2. The swap rate, which indicates re-
location of forest types, averaged slightly lower
for the mixture model (14.3 percent) than for
the uniform model (16.9 percent), but the sum
of persistence and swap was still consistently
higher under the mixture model. The lower
rate of net change under the mixture model

Figure 4 Detailed view of explana-
tory power and degree of analog for
1,000 trials of k-means clustering algo-
rithm for k = 6 using uniform and mix-
ture models. Trials with highest value
of optimization criterion (PVE + dA) are
circled.
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Figure 5 Persistence, swap, and net change for optimally selected models for k = 3 to 8 forest types.

in comparison to the uniform model therefore
resulted entirely from increased persistence, as
opposed to swap.

The optimally selected classification scheme
for k = 4 is presented in further detail to illus-
trate the influence of the mixture model on in-
dividual forest community types. Both models
led to similar forest type definitions (Table 2),
with the same indicator taxa for three out of
four forest types: (1) beech–sugar maple, (2)
ash–poplar, and (3) sugar maple–black cherry.
The fourth forest type also had similar taxon
composition, but the indicator taxa for the uni-
form (red oak–red maple) and mixture (pine–

white oak) models differed. For convenience,
these two forest types will be referred to col-
lectively as (4) oak–pine–red maple. Note that
the taxa with the highest indicator values, used
to name each forest type, were not always those
with the highest relative abundances because
indicator values also take into account the de-
gree to which a taxon is found exclusively in
one forest type and not other forest types.

Net loss, persistence, swap, and net gain for
individual forest types are shown in Figure 6.
Net loss or gain was lower, and persistence was
higher, for every forest type under the mixture
model than under the uniform model. Swap

Table 2 Forest types defined in terms of typical relative taxon abundances (in percent) by the
optimally selected four-cluster solutions (indicator taxa for each forest type are highlighted in bold)

Uniform model Mixture model

Beech– Beech–
Sugar Sugar maple– Ash– Red oak– Sugar Sugar maple– Ash– Pine–White

Taxa maple Black cherry Poplar Red maple maple Black cherry Poplar oak

Ash 5.5 10.0 24.9 7.3 5.3 9.7 25.9 8.0
Basswood 4.9 4.5 2.9 1.8 5.1 4.5 2.8 2.3
Beech 44.9 14.7 5.0 12.7 47.1 13.8 4.5 19.2
Birch 2.6 2.1 1.2 2.2 2.4 2.1 1.1 2.8
Black cherry 0.4 8.7 9.0 7.1 0.4 9.3 8.1 5.7
Elm 3.9 4.4 5.0 1.3 3.9 5.2 4.9 1.6
Hemlock 9.7 5.7 5.6 7.6 8.9 5.4 5.1 10.7
Hickory 1.0 1.7 4.8 2.5 0.7 1.9 4.9 2.6
Pine 2.5 0.9 1.1 6.4 1.4 0.8 1.3 6.8
Poplar 0.4 3.8 13.0 5.9 0.4 3.7 13.3 5.2
Red maple 2.5 7.2 12.1 17.4 1.8 7.9 12.8 12.6
Red oak 0.2 1.7 2.4 9.5 0.2 1.9 3.0 5.3
Sugar maple 20.7 35.1 12.6 13.7 21.9 33.9 11.8 13.3
White oak 1.9 1.4 1.4 7.5 1.6 1.5 1.6 5.8
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Figure 6 Net loss, persistence, swap, and net gain (in percent) for optimally selected classification
schemes with k = 4 forest types.

occurred in only two forest types, sugar maple–
black cherry and oak–pine–red maple. The ef-
fect of the mixture model on the rate of swap
was inconsistent, increasing for sugar maple–
black cherry but decreasing for oak–pine–red
maple.

Figure 7 shows maps of both models, with
proportions of each grid cell in a given forest
type indicated by horizontal lines for the HLC
(presettlement) and vertical lines for the FIA
(modern) data sets. Persistence of a forest type
within a grid cell is indicated by the presence
of both horizontal and vertical lines, forming
a cross. Such crosses are visually scarce in the
uniform model (top row) but appear more fre-
quently in the mixture model (bottom row).
For example, ash–poplar, the most dominant
forest type in the FIA, occupies only two (of a
total 162) grid cells in the HLC under the uni-
form model but is present in thirty grid cells
in the HLC under the mixture model. Sugar
maple–black cherry presents a different pat-
tern of change, but the influence of the mix-
ture model is similar. Moderately abundant in
both HLC and FIA, its center of distribution
shifts to the south and west, persisting across
both time periods in only four grid cells under
the uniform model. Under the mixture model,
however, the area of persistence expands to in-
clude portions of over thirty-five grid cells.

Space limitation precludes detailed analysis
of other classifications. Although the specifics

varied, the general tendencies observed for the
case of k = 4 were similar across all values of k
except k = 2, as described earlier.

Discussion

Assessments of whether or not communities
have retained their coherence over time de-
pend on the scale of analysis (Barnes et al.
1998). Researchers have suggested that the
coarse data resolution of bearing trees requires
PLSR data to be analyzed over at least several
counties (Manies and Mladenoff 2000). Our
results suggest that this coarse resolution, al-
though unavoidable, creates a consistent bias
against the discovery of analog communities
unless nonuniformity within each spatial unit
is accounted for. Net change in the areal extent
of forest community types averaged 12 percent
higher under the uniform model than when lin-
ear unmixing was used to estimate probable oc-
currence of communities below the resolution
of analysis.

Even under the mixture model, net change
in the areal extent of forest community types
averaged 67 percent for the classification
schemes we examined. This high community
turnover rate is to be expected, considering
the net change of 50 percent in overall taxon
abundances. However, it also suggests that
the changes in forest type composition are
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Figure 7 Maps of forest types derived from uniform and mixture models. Shades of gray for horizontal
and vertical bars indicate percentage of grid cell in given forest type for Holland Land Company (HLC)
and Forest Inventory and Analysis (FIA data), respectively.

primarily due to increases and decreases in in-
dividual taxon abundances, rather than changes
in stand-scale associations between taxa. This
might be true of other studies as well. For
example, using a similar grid cell size as this
study, Friedman and Reich (2005) suggested
that close to two thirds of community types
present in northeast Minnesota today have
almost no presettlement analogs. Their data
show a net change of 78 percent in the areal ex-
tent of forest community types, which is similar
to the average of 79 percent we found under the
uniform model across the classification schemes
analyzed. Although their rate of net change in
taxonomic composition of 34 percent is lower
than ours, they also distinguished many more
forest types, which would decrease the proba-
bility of finding analog communities in mixed
data.

The difference of 12 percent in the net
change in areal extent of forest types we ob-
served under the uniform and mixture models
had a disproportionate impact on the spatial

continuity that could be observed for each
forest type individually. Persistence of forest
types within a given grid cell more than dou-
bled under the mixture model in compari-
son to the uniform model (Figures 5 and 6).
By revealing more detail, linear unmixing also
provided a much clearer depiction of over-
all spatial dynamics, especially for the forest
types that were less dominant within a given
time period. For example, the mixture model
presents an unambiguous picture of ash–poplar
presence throughout the Lake Ontario Low-
land province at the time of the HLC, only
the scantest hint of which is visible under the
uniform model (Figure 7).

One question that persists whenever linear
unmixing is used is the degree of confidence
that can be placed in the estimated subresolu-
tion proportions. Although the model fit, mea-
sured here by PVE, is a useful measure, there
is no way to determine the precise composi-
tion of presettlement forest communities from
coarse resolution data. Alternative definitions

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
r
o
n
e
n
f
e
l
d
,
 
B
a
r
r
y
 
J
.
]
 
A
t
:
 
0
1
:
0
7
 
1
3
 
A
p
r
i
l
 
2
0
1
0



194 Volume 62, Number 2, May 2010

of forest types could be developed that would
result in the same PVE as those presented here,
as demonstrated by Wolbers and Stahel (2005).
However, two arguments can be made that
the general conclusions of this study are valid.
First, because a conservative strategy (k-means
clustering) was used to define forest types, the
resulting forest type definitions were located
within the centers of data clusters. Less con-
servative methods would have resulted in more
extreme forest type definitions. For example,
class definitions derived from the fuzzy c -means
clustering algorithm (Bezdek, Ehrlich, and Full
1984) tend toward extreme values within the
data matrix (McBratney and de Gruijter 1992),
whereas the method of Lee and Seung (2001)
results in forest type definitions outside of the
data matrix entirely. More extreme forest type
definitions would result in an even higher de-
gree of mixing and thus a larger influence of
the mixture model.

The observed spatial patterns of forest
communities provide a second reason to be
confident in the greater degree of continuity
predicted by linear unmixing. The additional
occurrences of each forest type “discovered”
by linear unmixing in one time period showed
a strong tendency toward locations in which
the same forest type was dominant in the other
time period. For example, the additional oak–
pine–red maple predicted by linear unmixing
to occur in the HLC data was concentrated
along the Pennsylvania border, coinciding spa-
tially with the area dominated by this forest type
in the FIA data (Figure 7). This high degree
of spatial correlation engenders confidence
that linear unmixing captured meaningful
information.

Although linear unmixing revealed greater
continuity in forest communities in our study
at the scale of two centuries across eight coun-
ties in western New York, this does not neces-
sarily mean that the same results will be found
in other study areas. Linear unmixing might
in theory reveal either a greater or lesser de-
gree of continuity than would otherwise be dis-
cerned. A useful area of future research would
be to characterize the effects of mixture model-
ing on change analysis under different types of
spatiotemporal pattern and, concomitantly, to
characterize the range of underlying spatiotem-
poral patterns that could give rise to a given
mixture model.

Conclusion

Previous studies have demonstrated large
changes in tree taxon composition in the east-
ern United States since European settlement,
which has led to a presumed lack of present-day
analogs to presettlement forest communities.
Both palynological and survey-based studies,
however, are limited in resolution and there-
fore subject to the vagaries of generalization.
Our findings suggest that the perceived lack
of analog communities might result in part
from data resolution, a problem that can be
mitigated through the use of linear unmix-
ing techniques. Although the increased ana-
log component we found between presettle-
ment and present was not large numerically,
it substantially enhanced our ability to observe
spatial patterns of change for individual forest
community types. We recommend that unmix-
ing techniques be used whenever community
analysis is conducted using coarse resolution
data. �
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